
ORNL/SPR-2017/527

Stucco System

Kelly Huffer
John Goodall
Maria Vincent
Michael Iannacone
Robert Bridges

October 3, 2017

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

ORNL/SPR-2017/527

DHS Science & Technology
Cyber Security Division

Stucco System

Kelly Huffer
John Goodall
Maria Vincent

Michael Iannacone
Robert Bridges

Date Published: June 1, 2018

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

This report has been prepared by Oak Ridge National Laboratory, Oak Ridge, TN 37831-6283 managed by
UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725.

Stucco System
Oak Ridge National Laboratory
Robert Bridges
John Goodall
Kelly Huffer
Mike Iannacone
Maria Vincent

Project Partners
Pacific Northwest National Laboratory
Stanford University
REN-ISAC

1 Problem
Security event data, such as intrusion detection system alerts, provide a starting

point for analysis, but are information impoverished. To provide context, analysts must
manually gather and synthesize relevant data from myriad sources within their enterprise
and external to it. Analysts search system logs, network flows, and firewall data; they
search IP blacklists and reputation lists, software vulnerability information, malware and
threat data, OS and application vendor blogs, and news sites. All of these sources are
manually searched for data relevant to the event being investigated. Relevant results must
then be brought together and synthesized to put the event in context and make decisions
about its importance and impact.

2 Summary
 Gathering and fusing relevant context is a manual, tedious process, but the results
of this process are required to know how to react to events. Stucco is a cyber intelligence
platform to help automate this process and provide relevant information to analysts
quickly and easily. Stucco collects data not typically integrated into security systems,
extracts domain concepts and relationships, and integrates that information into a cyber
security knowledge graph to accelerate decision making.
 By organizing data into a knowledge graph, security analysts will be able to
rapidly search for domain concepts, speeding up access to the information needed for
decision-making. The information returned will only be that which is pertinent to their
search. Our approach enables analysts to more quickly identify events that can be
discarded as false positives and to perform more thorough analysis with the relevant
context to make decisions.
 Stucco is open-source software available at https://stucco.github.io/

3 System Overview

3.1 Data Collection
 The collectors pull data or process data streams and push the collected data
(documents) into the message queue. Each type of collector is independent of others. The
collectors can be implemented in any language. Collectors can either send messages with
the document content or without. For messages without content, the collector will add the
document to the document store and attach the returned 'id' to the message. Collectors can
either be stand-alone and run on any host, or be host-based and designed to collect data
specific to that host. Stand-alone collectors may require state (state should be stored with
the scheduler, such as the last time a site was downloaded). Host-based collectors may
need to store state (e.g. when the last collection was run).

3.1.1 Collector Types
Web collector
Web collectors pull a document via HTTP/HTTPS given a URL. Documents will be
decompressed, but no other processing will occur. The documents can be various formats
such as HTML, XML, CSV, etc.

Scraping collector
Scrapers pull data embedded within a web page via HTTP/HTTPS given a URL and an
HTML pattern. The documents will be in HTML format.

RSS collector
RSS collectors pull an RSS/ATOM feed via HTTP/HTTPS given a URL. The documents
will be in XML format.

Twitter collector
Twitter collectors pull Tweet data via HTTP from the Twitter Search REST API given a
user (@username), hashtag (#keyword), or search term. The documents will be in JSON
format.

Netflow collector
Netflow collectors will collect from Argus (http://www.qosient.com/argus/). The
collector will listen for Argus streams using 'ra' tool and convert to XML and send the
flow data to the message queue as a string.

Host-based collectors
Host-based collectors collect data from an individual host using agents. Host-based
collectors should be able to collect and forward:
• System logs
• Hone (https://github.com/HoneProject/) data
• Installed packages

The documents will be in whatever format the agent uses.

3.1.2 Post-Processing
 After collection has taken place the content may require additional handling. For
example, the NVD source is tarred and gzipped. We specifically provide a post-
processing method that will untar and unzip the file before it is sent on through the
pipeline. We've added following post-processing actions on the content:
• unzip: uncompress the content by first determining the compression type based on

the file extension .gz, bz2, etc.
• tar-unzip: untar the file content prior to uncompressing the content.
• removeHTML: applies the Boilerpipe (https://github.com/kohlschutter/boilerpipe)

process to the content to extract the base text content by ignoring the HTML tags in
a webpage. It also uses the Apache TIKA library (https://tika.apache.org/) to extract
the documents’ metadata. Recommended for use on all unstructured text sources.

3.1.3 Input Transport Protocol
Input transport protocol will depend on the type of collector.

3.1.4 Input Format
Input format will depend on the type of collector.

3.1.5 Output Transport Protocol
Advanced Message Queuing Protocol (AMQP) (http://www.amqp.org/), as

implemented in RabbitMQ. See the concepts documentation
(http://www.rabbitmq.com/tutorials/amqp-concepts.html) for information about AMQP
and RabbitMQ concepts. See the protocol documentation
(http://www.rabbitmq.com/amqp-0-9-1-reference.html) for more on AMQP. Examples
below are in Go (http://golang.org/) using the AMPQ package
(http://godoc.org/github.com/streadway/amqp). Other libraries
(http://www.rabbitmq.com/devtools.html) should implement similar interfaces.

 The RabbitMQ exchange uses the exchange-type of 'topic' with the exchange-
name of 'stucco'. The exchange declaration options should be:
 "topic", // type
 true, // durable
 false, // auto-deleted
 false, // internal
 false, // noWait
 nil // arguments

The publish options should be:
 stucco, // publish to an exchange named stucco
 <routingKey>, // routing to 0 or more queues
 false, // mandatory
 false // immediate

The '<routingKey>' format should be: 'stucco.in.<data-type>.<source-name>.<data-name
(optional)>', where:
data-type (required): the type of data, either 'structured' or 'unstructured'
source-name (required): the source of the collected data, such as cve, nvd, maxmind, cpe,
argus, hone.
data-name (optional): the name of the data, such as the hostname of the sensor.

The message options should be:
 DeliveryMode: 1, // 1=non-persistent, 2=persistent
 Timestamp: time.Now(),
 ContentType: "text/plain",
 ContentEncoding: "",
 Priority: 1, // 0-9
 HasContent: true, // boolean
 Body: <payload>

'DeliveryMode' should be 'persistent'.

'Timestamp' should be automatically filled out by your AMPQ client library. If not, the
publisher should specify.

'ContentType' should be "text/xml" or "text/csv" or "application/json" or "text/plain"
(i.e. collectorType from the output format). This is dependent on the data source.

'ContentEncoding' may be required if things are, for example, gzipped.

'Priority' is optional.

'HasContent' is an application-specific part of the message header that defines whether
or not there is content as part of the message. It should be defined in the message header
field table using a boolean: “HasContent: true” (if there is data content) or “HasContent:

false” (if the document service has the content). The next extraction component will use
the document service accordingly. This is the only application-specific data needed.

'Body' is the payload, either the document itself or the ID if 'HasContent' is false.

The corresponding binding keys for the queue (http://www.rabbitmq.com/amqp-0-9-1-
quickref.html#class.queue) defined in the extraction pipeline (RT) can use wildcards to
determine which extraction component should handle which messages:
* (star) can substitute for exactly one word.
(hash) can substitute for zero or more words.
For example, 'stucco.in.#' would listen for all input.

3.1.6 Output Format
There are two types of output messages: (1) messages with data and (2) messages

without data that reference an ID in the document store.

3.2 Scheduler
 The scheduler is a Java application that uses the Quartz Scheduler library
(http://www.quartz-scheduler.org) for running tasks. The scheduler instantiates and runs
collectors at the scheduled times. The schedule is specified in a configuration file.
 The collectors and scheduler are tightly coupled, so it makes sense to discuss
major aspects of collection control together. Accordingly, we discuss configuration
options and redundancy control here, even though most of their actual implementation is
part of the collectors.

3.2.1 Configuration
 The schedule is maintained in the main Stucco configuration file, stucco.yml. The
scheduler can read directly from file.

3.2.2 Running
 The scheduler's main class is gov.pnnl.stucco.utilities.CollectorScheduler. It
recognizes the following switches:
-section

This tells the scheduler what section of the configuration to use. It is currently a
required switch and should be specified as "–section demo-load".

-file
This tells the scheduler to read the collector configuration from the given YAML
file, typically stucco.yml.

-url
This tells the scheduler to read the collector configuration from a URL like for an
etcd service, which will typically be http://10.10.10.100:4001/v2/keys/ (the actual
IP may vary depending on your setup). Alternatively, inside the VM, you can use
localhost instead of the IP

3.2.3 Schedule Format
Each exogenous collector’s configuration contains information about how and

when to collect a source. Example from a configuration file:

 default:
 …
 scheduler:
 collectors:
 -
 source-name: Bugtraq
 type: PSEUDO_RSS
 data-type: unstructured
 source-URI: http://www.securityfocus.com/vulnerabilities
 content-type: text/html
 crawl-delay: 2
 entry-regex: 'href="(/bid/\d+)"'
 tab-regex: 'href="(/bid/\d+/(info|discuss|exploit|solution|references))"'
 next-page-regex: 'href="(/cgi-bin/index\.cgi\?o[^"]+)">Next ><'
 cron: 0 0 23 * * ?
 now-collect: all

source-name
The name of the source, used primarily as a key for the document-processing pipeline
(i.e. the extraction components).

type
The type key specifies the primary kind of collection for a source. Here's one way to
categorize the types.

Generic Collectors - Collectors used to handle the most common cases.
• RSS: An RSS feed
• PSEUDO_RSS: A web page acting like an RSS feed, potentially with multiple

pages, multiple entries per page, and multiple subpages (tabs) per entry. This uses
regular expressions to scrape the URLs it needs to traverse.
• TABBED_ENTRY: A web page with multiple subpages (tabs). In typical use, this

will be a delegate for one of the above collectors, and won't be scheduled directly.
• WEB: A single web page. In typical use, this will be a delegate for one of the above

collectors, and won't be scheduled directly.

Site-Specific Collectors - Collectors custom-developed for a specific source.
• NVD: The National Vulnerability Database
• BUGTRAQ: The Bugtraq pseudo-RSS feed. (Deprecated) Use PSEUDO_RSS.
• SOPHOS: The Sophos RSS feed. (Deprecated) Use RSS with a tab-regex.

Disk-Based Collectors - Collectors used for test/debug, to "play back" previously-
captured data.
• FILE: A file on disk
• FILEBYLINE: A file, treated as one document per line
• DIRECTORY: A directory on disk with multiple documents

source-uri
The URI for a source.

crawl-delay
The minimum number of seconds to wait between requests to a site.

*-regex
The collectors use regular expressions (specifically Java regexes) to scrape additional
links to traverse. There are currently keys for three kinds of links:
• entry-regex: In a PSEUDO_RSS feed, this regex is used to identify the individual

entries.
• tab-regex: In an RSS or PSEUDO_RSS feed, this regex is used to identify the

subpages (tabs) of a page.
• next-page-regex: In a PSEUDO_RSS feed, this regex is used to identify the next

page of entries.

cron
When to collect is specified in the form of a Quartz Scheduler cron expression.
CAUTION: Quartz's first field is seconds, not minutes like some crons.
There are seven whitespace-delimited fields (six required, one optional):

’s m h D M d [Y]’
These are seconds, minutes, hours, day of month, month, day of week, and year.
• Use * to mean “every”
• Exactly one of the D/d fields must be specified as ? to indicate it isn’t used
• In addition, we support specifying a cron expression of now, to mean “immediately

run once”.

now-collect
The now-collect configuration key is intended as an improvement on the now cron
option, offering more nuanced control over scheduler start-up behavior. This key can take
the following values:
• ‘all’: Collect as much as possible, skipping URLs already collected
• ‘new’: Collect as much as possible, but stop once we find a URL that's already

collected
• ‘none’: Collect nothing; just let the regular schedule do it

3.2.4 Reducing Redundant Collection
 Most of the scheduler consists of fairly straightforward use of Quartz. The one
area that is slightly more complicated is the logic used to try to prevent, or at least reduce,
redundant collection and messaging. We’re trying to avoid collecting pages that haven’t
changed since the last collection. Sometimes we may not have sufficient information to
avoid such redundant collection, but we can still try to detect the redundancy and avoid
re-messaging the content to the rest of Stucco. Our strategy is to use built-in HTTP
features to prevent redundant collection where possible, and to use internal bookkeeping

to detect redundant collection when it does happen. We implement this strategy using the
following tactics:

1. We use HTTP HEAD requests to see if GET requests are necessary. In some
cases the HEAD request will be enough to tell that there is nothing new to collect.

2. We make both HTTP HEAD and GET requests conditional, using HTTP’s If-
Modified-Since and If-None-Match request headers. If-Modified-Since checks
against a timestamp. If-None-Match checks against a previously returned
response header called an ETag (entity tag). An ETag is essentially an ID of some
sort, often a checksum.

3. We record a SHA-1 checksum on collected content, so we check it for a match the
next time. This is necessary because not all sites run the conditional checks. For a
feed, the checksum is performed on the set of feed URLs.

 These checks are performed by the collectors and the internal bookkeeping is kept
in the CollectorMetadata.db file. Each entry is a whitespace-delimited line containing
URL, last collection time, SHA-1 checksum, and UUID.

3.2.5 State
 The scheduler runs the schedule as expected, controlling when the collectors
execute. Other aspects of collection control are less complete, and need improvements in
the following areas:

1. Exception Handling - Minor exceptions during collection are generally ignored.
However, no attempt is made to deal with more serious exceptions. In particular,
no attempt is made to ensure that the metadata recording, document storage, and
message sending are performed in a transactional manner. The scheduler does
have a shutdown hook so it can attempt to exit gracefully for planned shutdowns.

2. Collector Metadata Storage - This is currently implemented strictly as proof-of-
principle. Metadata is stored to a flat file, requiring constant re-loading and re-
writing of the entire file. We know this won't scale, and plan to migrate to an
embedded database.

3. Leveraging robots.txt - The code does not currently read a site's robots.txt file. It
should do so in order to determine the throttling setting, as well as know if it
should avoid collection of some files. Currently, we can honor these in the
configuration file by using the crawl-delay setting and by only specifying URLs
that are fair game.

3.3 Document Service
 This software provides a storage service for text documents and metadata over an
HTTP API. The API is exposed on ‘host:port/document/‘ with the following routes:
• Get a document:

GET host:port/document/<id>
Returns a JSON object of the document and meta-data, which includes the success
or failure.
• Post a document:

POST host:port/document/ will assign an id
POST host:port/document/<id> to specify the id

Returns a JSON object that describes the success or failure.

• Delete a document:
DELETE host:port/document/<id>

Returns a JSON object that describes the success or failure.

Examples:
Below are examples using ‘curl’ (http://curl.haxx.se).

1) Upload a json file:

curl -XPOST localhost:8000/document/12345\?extractor\=test\&title\=test

--data "{key1: 'some data', key2: 'more data'}" -i -H "Content-Type:

application/json"

HTTP/1.1 200 OK

Content-Type: application/json

Date: Fri, 21 Nov 2014 01:53:18 GMT

Content-Length: 61

{"ok":"true","key":"12345","message":"saved document by id"}

2) Retrieve a file:

curl -XGET localhost:8000/document/12345 –i

HTTP/1.1 200 OK

Content-Type: application/json

Date: Fri, 21 Nov 2014 01:54:41 GMT

Content-Length: 122

{"ok":"true","key":"12345","document":"{key1: 'some data', key2: 'more

data'}","timestamp":1416534798,"extractor":"test"}

3) Delete a file:

curl -XDELETE localhost:8000/document/12345 -i

HTTP/1.1 200 OK

Content-Type: application/json

Date: Fri, 21 Nov 2014 01:55:38 GMT

Content-Length: 57

{"ok":"true","key":"12345","message":"removed document"}

4) Upload an image file:

base64 file.png | curl -XPOST localhost:8000/document/ --data @- -i -H

"Content-Type: image/png"

HTTP/1.1 100 Continue

HTTP/1.1 200 OK

Content-Type: application/json

Date: Thu, 15 Jan 2015 20:36:16 GMT

Content-Length: 86

{"ok":"true","key":"befc3e40-e3de-4666-b7b5-

155e1b0935d6","message":"saved document"}

5) Download an image file; this example uses ‘jq’ (http://stedolan.github.io/jq/) to extract
the base64 data from the JSON object:

curl -XGET localhost:8000/document/1de60b72-e91b-4a26-9466-86f0d3ccdf7f

--silent | jq --raw-output .document | base64 -D > file.png

3.4 Data Model
 The Stucco data model aligns with the Structured Threat Information eXpression
(STIX) language version 1.2.0. The documentation describes STIX as “a structured
language for describing cyber threat information so it can be shared, stored, and analyzed
in a consistent manner”. See the STIX version 1.x webpage for more details.
(https://stixproject.github.io) Below is the graph representation of STIX data.

3.5 RT
RT is the real-time processing pipeline of Stucco. The data it receives will be transformed
into a subgraph, consistent with the STIX data model (previously described). Then, the
subgraph will be aligned with the knowledge graph. The RT pipeline consists of two
message queue consumers (structured and unstructured), an unstructured information
extraction process, a structured information extraction process, an alignment component,
and a connection to the graph storage system. The following subsections describe the RT
pipeline components.

3.5.1 Message Queue
 The message queue accepts input documents, from the collectors (publishers) and
holds the documents in separate queues based on the routing key. RT consumes a
message from the structured queue for structured information extraction, and consumes
from the unstructured queue for unstructured extraction. The message queue uses the
technology, RabbitMQ (http://www.rabbitmq.com/), which implements the Advanced
Message Queueing Protocol (AMQP) standard version 0.9.1. The queue should hold
messages until RT acknowledges its receipt.

3.5.2 Entity Extraction
Once the message is pulled from the unstructured queue, RT gets the document

ID from within the message, and queries the document service for the document text and
title. The text and title are passed to the entity extraction component. The entity
extraction component identifies and labels cyber-domain entities from unstructured text.
The document’s text is either contained in the message itself, or the entity extraction
component requests it from the document service. This library makes use of Stanford's
CoreNLP (http://nlp.stanford.edu/software/corenlp.shtml) and Apache's OpenNLP
(https://opennlp.apache.org) libraries.

3.5.2.1 Entity Types
• Software

o Vendor
o Product
o Version

• File
o Name

• Function
o Name

• Vulnerability
o Name
o Description
o CVE ID
o MS ID

3.5.2.2 Input
• Trained Apache OpenNLP averaged perceptron model file in binary format that

represents a cyber-domain entity model

• Default CoreNLP models for tokenizing, part-of-speech tagging, sentence splitting,
and parse-tree building
• Text content of document to be annotated with cyber labels
• Predefined heuristics, including known-entity lists (i.e. gazetteers) and regular

expressions
• Mapping of known tokens (i.e. words or punctuation) to a unique label, found during

training

3.5.2.3 Process

1. Use the CoreNLP library to tokenize, part-of-speech tag, and build the parse trees of
the document's text.

2. Check the tokens (i.e. words and punctuation) against lists of known entities such as
Google's Freebase data sets. If the token is found, label it appropriately.

3. Attempt to match a token, or set of tokens against regular expressions. If a match is
found, then label the token, or set of tokens.

4. Check token against the token-to-unique-label map and label appropriately, if
found.

5. If the token is still unlabeled, generate features/context for the token, and evaluate
them against the maximum entropy model (MEM) to determine the label with the
highest probability.

3.5.2.4 Features / Context Used
• Token (word or punctuation to be labeled)
• Prefix (first 6 characters of token)
• Suffix (last 6 characters of token)
• Part of speech tag
• Match current token against a set of regular expressions
• Match pervious token against a set of regular expressions

3.5.2.5 Output

An Annotation object that represents the document as a map, where annotator
classnames are keys. The document map includes the following values:
• Text: original raw text
• Sentences: list of sentences

o Sentence: map representing one sentence
§ Token: word within the sentence
§ POSTag: part-of-speech tag
§ CyberEntity: cyber domain label for the token

o ParseTree: sentence structure as a tree

3.5.3 Relation Extraction
 The relation extraction component creates vertices from a document annotated
with cyber-entity labels, and creates edges using a set of SVMs and feature models to
predict relationships between these cyber entities.

3.5.3.1 Relationship Types
* ExploitTargetRelatedObservable Edge

 Exploit Target (e.g. vulnerability) --> Observable (e.g. software)

* Sub-Observable Edge

 Observable (e.g. software) --> Observable (e.g. file)

* Software, File, Function, Vulnerability Vertex Properties

 Software/file/function/vulnerability properties are part of the same vertex

Example Text: "... MS15-035, which addresses a remote code execution bug ..."

"MS15-035" is extracted as a vulnerability MS ID property, and "remote code
execution" is extracted as a vulnerability description property. This type of
relationship indicates that both properties are describing the same vulnerability
object.

3.5.3.2 Input
• Output from the entity-extraction component as an Annotation object, which

represents the sentences, list of words from the text, along with each word's part of
speech tag and cyber-domain label.
• The string name of the document's source
• The string name of the document's title

3.5.3.3 Process

1. Pre-trained Word2Vec model
2. Pre-trained SVM models, one for each relationship and entities' order of appearance
3. Pre-generated feature maps, one for each relationship and entities' order of

appearance
4. NVD XML files are used to find examples of the relationships
5. For each Annotated document:

a. Use NVD files to find known examples of relationships in document
b. Use Word2Vec model to encode each token of the document
c. Use feature maps to generate feature vectors for each token of the document
d. Use pre-trained SVM models with the document's feature vectors to predict
relationships between cyber entities

Please refer to relation-bootstrap repo (https://github.com/stucco/relation-bootstrap) for
more information on the research related to this process.

3.5.3.4 Output

A JSON-formatted subgraph of the vertices and edges is created, which loosely
resembles the STIX data model.

 {

 "vertices": {

 "1235": {

 "name": "1235",

 "vertexType": "software",

 "product": "Windows XP",

 "vendor": "Microsoft",

 "source": "CNN"

 },

 ...

 "1240": {

 "name": "file.php",

 "vertexType": "file",

 "source": "CNN"

 }

 },

 "edges": [

 {

 "inVertID": "1237",

 "outVertID": "1238",

 "relation": "ExploitTargetRelatedObservable"

 },

 {

 "inVertID": "1240",

 "outVertID": "1239",

 "relation": "Sub-Observable"

 }

]

 }

3.5.4 STIX Extraction
There are two ways data can enter the STIX extraction process. The first is from

RT pulling a new message from the structured queue. In this case, RT gets the document
or ID from within the message, and queries the document service, if necessary. Then, the
text is passed to the STIX extraction component for data ingestion. The second method of
entry is from the relation extraction component. The JSON-formatted subgraph resulting
from relation extraction needs to be transformed into the STIX data model before it can
be aligned with the knowledge graph.

The structured data ingested into the Stucco system can be of various formats.
Information extraction requires transforming the raw data into a subgraph based on the
STIX data model. The subgraph can then be aligned with the knowledge graph. The
following data types are currently implemented:
• Argus network flows
• Bugtraq exploit targets and remediation
• 1d4 malware
• CAIDA autonomous systems mapping
• CleanMX virus
• Common Platform Enumeration (CPE) software

• Common Vulnerabilities and Exposures (CVE) database
• DNS records
• F-Secure threat descriptions
• Maxmind GeoIP
• HTTP header requests
• Hone process and port listing
• Login events from auth.log
• Malware domain list indicators
• Metasploit exploit data
• National Vulnerability Database (NVD)
• Debian package list
• Service list
• Sophos virus alerts and indicators
• Zeus Tracker malware

3.5.5 Alignment
 Alignment is the process of merging a new subgraph, generated by the extraction
components, with the full knowledge graph. The alignment code receives all content from
a single source as a single subgraph. For example, when Stucco loads content from a
CVE source file, all the content is transformed into a JSON structure (similar to
GraphSON), and passed to alignment. The alignment code “assumes" the string it
receives is a JSON subgraph with a set of vertices and an array of edges. Alignment
handles the merging of new content as individual vertices and edges without taking into
account any topology/connectivity. There are two broad categories of alignment:

1. Merging new nodes that have unique names / IDs (e.g. CVE #):
• If a matching name / ID is not found in the knowledge graph, add the node.
• If a matching name / ID is found in the knowledge graph, merge properties and

merge edges.
2. Merging nodes without names / IDs (e.g. malware). Some of these nodes may not
have a name, others may have a name but it is not available:
• Identify equivalent nodes and score the confidence that the two nodes refer to

the same domain concept.
• If a suitable match is found, merge properties and merge edges.
• If a suitable match is not found, add the new node, and merge edges, if needed.

 Of the two broad categories for alignment our first implementation is only of the
first category. Here are the steps:

1. Using only the vertices first:
• Each vertex’s unique name / ID is searched for within the knowledge graph

(i.e., unique name / alias in Postgres).
• If no vertex is found, then this vertex is created within the knowledge graph.
• If a vertex is found then the properties are “merged” with the vertex in the

knowledge graph. Properties that were not present are added and existing
properties are appended to, overridden, or retained if they are newer than the

vertex being merged. There are two types of merge methods for Postgres:
appendList and keepUpdates.

 2. Once all the vertices have been added, then the edges can be added.
• Note, vertices must be added first or the new edges won’t find the vertices

within the knowledge graph.
• Using the edge definition (i.e., which vertices ID’s define an edge) we look

for incoming and outgoing vertices as defined in the knowledge graph.
• If an edge’s definition can’t find all the vertices, an error is logged and the

process moves to the next edge.
• When the respective vertices are found the process then creates a property

map for the edge and adds the edge properties to that map, finally committing
that edge to the knowledge graph. If an edge already exists we are not
performing alignment with it, which will create duplicate edges.

To perform alignment with Postgres we load alignment rules written in PL/pgSQL into
database during initialization, and all alignment process is occurring inside of a database.

3.5.5.1 Alignment Research Avenues
There are several venues to deal with the alignment problem in other domains. In

the database domain, this is called the merge/purge problem of combining different
databases. The theory is similar however the underlying structures are different because
we are using a graph database whereas your standard relational database is row-column
oriented. Part of this task will be exploring what functional pieces can be leverage from
the database community and what pieces can be leveraged from the graph community.
The following list attempts to highlight recommendations and considerations for future
improvements to the alignment process.

1. The alignment rule set will need to be based on the STIX data model.
2. Rule construction may want to leverage a domain-specific language (DSL) to

make construction and verification of the rules easier to manage.
3. As rules are constructed are these rules maintained in a database or loaded via file
4. Manual Correction Tool

• Ability to revert/override modifications to the knowledge graph if there are
incorrect insertions
• Ability to add content without having to go through the pipeline
• See the provenance on a node/edge and know what entries made that

contribution
5. Consider provide a holding queue for entries that have enough conflicting

evidence that manual intervention is needed.
6. Log provenance information for changes/updates on edges and nodes.
7. When updates occur on either a node or edge the result is:

• Overwrite content
• Append content (simple merge)
• Merge Content (identify what portions should be combined)

8. Need to determine for different nodes/edges what comparison measure should be
used. What kinds of comparison measures are needed? How much of deviation
results in creation of a new node/edge, updating existing, or holding?
• For canonical names or IDs the comparison function should be an equality

measure
• For dates, we need to consider timestamps that vary with only year down to

the second (i.e. general to precise). How will we deal with this broad range
(unless we provide range values)?
• For unstructured text, there are several approaches but this will depend upon

the property in question.
9. Meta-Rules will need to be used to make sure that updates will be smart. For

example, new sources of information may provide old content and shouldn't
overwrite current content. Checking timestamps to know what content is most
recent.

10. Approximate subgraph matching with graph edit distance. This will help identify
which subgraphs are most likely a match. However, it won't be conclusive as
additional functions need to be applied at the individual levels to determine the
update/insertion action.

3.5.5.1.1 Merge Properties
 When merging two nodes or edges where the new and existing values of a
property differ, the updated value will be determined by some function that is specified
for that property. The updated value may be (a) one of the two conflicting values, (b) a
new value derived from both input values, or (c) an array-like object with both values.
These functions may make use of any node properties, such as the new or existing node's
confidence score, source(s), or published date(s). General process when merging nodes
(properties that had “null” for either the existing or new value can be handled in the same
way):

A) resolve value: for each conflicting property, identify the updated value to insert into
the knowledge graph. e.g.:

existing_node["conflicting_property"] =

resolve_property_with_strategy(conflicting_property, existing_node, new_node)

B) update graph: update ‘existing_node.conflicting_property’ in the knowledge graph,
and ‘new_node’ will not be added to graph.

Edges to/from ‘new_node’ in the subgraph will be created in the knowledge graph to
‘existing_node’. This assumes all nodes from the subgraph are added to the knowledge
graph before edges.

Example resolution functions:

 //publishedDate is an integer unix timestamp

 resolve_property_with_newest(property_name, existing_node, new_node)

 {

 if (existing_node["publishedDate"] < new_node["publishedDate"])

 return new_node["property_name"]

 else

 return existing_node["property_name"]

 }

 //confidence ("score") is a float between 0 and 1

 resolve_property_by_confidence(property_name, existing_node, new_node)

 {

 if (existing_node["score"] < new_node["score"])

 return new_node["property_name"]

 else

 return existing_node["property_name"]

 }

 Other examples could include a weighted average by confidence scores, or
functions that may be unique to a specific property, e.g. an account's ‘lastLogin’ property
might always take the newest value, or a vulnerability's ‘patchAvailable’ property might
never change to ‘false’ once a ‘true’ value has been seen. Merging node confidence score
properties will always use the same function across all node types. Other properties may
share the same functions.

3.5.5.1.2 Merge Edges
 Nodes can be added or merged into the knowledge graph. The edges associated
with those nodes need to be added or merged as well. If both nodes were merged or
added to the knowledge graph, the strategy for merging is based on whether or not there
is an existing edge. If no existing edge exists, add the edge. If an existing edge exists,
merge the properties of both edges, as described above in the merge properties
subsection.

3.5.5.1.3 Identify Equivalent Nodes
 This process starts with a new node, with no matching ID found in the database.
The database is searched for existing nodes which may be equivalent, and if a match is
found, the node properties and edges are merged as above. If an equivalent node is not
found, one is created, and its edges are merged or added as needed. Some node types,
such as IP addresses, should always have matching IDs, and should not search for
approximate matches. However other node types, such as malware, will very rarely have
matching IDs even when there is a matching node present. The nodes are equivalent if
they represent the same real-world entity, even if they do not have the same ID.
 When searching for an equivalent node, the first step is to build a restricted set of
potential matches. The purpose of this step is to reduce the number of expensive in-depth
comparisons that are needed, by replacing most of them with a much quicker comparison
that eliminates most nodes. To start, only nodes of the same node type should be
considered (e.g. malware can only possibly match malware, etc.) Next, a "canopy" is
found, which contains all potentially-matching nodes. The specifics of this depend on the
comparison techniques for the field and node pairs chosen below, but as an example,
assume that nodes are matched based on distance, and that the node distance depends on
the weighted sum of property distances. If one pair of properties have a large enough

distance, that alone could make a match impossible, then comparing the remaining fields
is not needed.
 For each potentially equivalent node that remains, calculate the distance for each
of their properties. There are many approaches to finding these distances, and the
distance metric used may vary based on the data types and the field's meaning. Choosing
a suitable distance metric depends on the data type and the meaning of the field, but it
also depends on the types of errors anticipated. Most of the literature focuses on human
error, such as typos, misspellings, and inconsistent representation (eg. "Avenue" vs.
"Ave.") In our case, we anticipate most of the errors will originate in the text extraction
process, and handling these types of errors has not been studied extensively.

1. Token distance - Token distance compares two multi-word strings, breaks them
into individual words, and compares the counts of words in each string. (This is
sometimes described as a "bag of words.") This can be expanded to consider word
frequency and misspellings in the final distance. This is best suited to reasonably
long sections of text, such as a description field.

2. Character distance - Character distance, in the simplest case, is the "edit distance"
or "Levenshtein distance" between two strings - the total number of insert, delete,
or replace operations needed to transform one string into another. This can be
expensive, but some optimizations are possible. There are numerous variations on
this basic approach, such as giving different weights to the different operations, or
reducing the cost of adjacent insertions, or varying the cost based on position
within the string. This can also include varying the cost based on the specific
substitution performed, to account for misspellings and phonetic similarity. One
interesting approach is to break the strings down into "q-grams" (overlapping
substrings of some fixed length) and then finding the token distance using one of
the techniques from item 1.

3. Numeric Distance - The techniques for finding distance between numeric fields
are generally much simpler than the above categories. In most cases, this is
simply the difference between the values. However often in the literature, numeric
fields are simply treated as strings, and one of the above methods are used.

4. Domain-specific distance - This involves finding a distance based on some
domain specific rules. For example, if a field contained a log level (Emergency,
Alert, Critical, Error, Warning, Notice, Info, Debug) then "Debug" may have a
distance of 1 from "Info", and a distance of 4 from "Error".

 After all property distances have been found, they should be combined to find
nodes which are equivalent overall. Again, there are many techniques available to
achieve this. Most or all of these techniques can be extended to add a "reject region" for
nodes that are too uncertain to be automatically assigned as equivalent, but are instead
added to a queue for further (generally manual) review.

1. Probabilistic approaches - There are many approaches that find the probability of
a node matching based on the probability of the pairs of fields matching. This
requires either learning or estimating these probabilities for each field. Some
approaches add an adjustable cost factor, which is useful in cases where false
positives and false negatives have different impacts on the use of the data.

2. Supervised and semi-supervised approaches - if labeled training data is available,
a variety of supervised and semi-supervised machine learning techniques are
available, using the list of distances and/or the node properties as the input vector.
Examples include using Support Vector Machines (SVM), clustering approaches,
and graph partition approaches. Note that some of these are intended to find
groups of matching entries, instead of matching pairs as in our case.

3. Unsupervised approaches - These generally rely on clustering to find groups of
similar nodes. In some cases, there is an additional step to review and label these
clusters. In some cases, after labeling these clusters, this data is then used to
"bootstrap" a different approach.

4. Active-learning approaches - These are similar to the approaches above, but they
make use of the fact that most cases are either obvious matches or obvious non-
matches. They find the relatively few ambiguous cases, prompt for human
labeling, and then adjust their parameters as needed. These approaches seem
promising, but somewhat less studied than the previous two categories.

5. Distance-based approaches - These approaches also make use of the fact that most
non-matching nodes are very distant ("sparse neighborhood”), and matching
nodes tend to be few and close ("compact set”). In the simplest case, this involves
finding a distance from a weighted sum of the field distances, and then comparing
that node distance with some threshold. However, the problem becomes finding
suitable weights for each field, and finding an appropriate threshold for a match,
which tends to lead back to the above approaches.

6. Rule-based approaches - These approaches are based on constructing domain-
specific rules that must be satisfied for a match. These rules are often expressed in
some domain-specific language. These approaches tend to be highly accurate, but
they require a large amount of manual effort from a domain expert to create and
troubleshoot these rules. One interesting approach uses labeled training data to
create lists of potential rules, which are then reviewed and adjusted by a domain
expert.
All of these approaches are adopted from record matching in conventional

databases, which is a well-studied problem. Unfortunately, there is still no overall best
approach for that problem, instead, it is highly dependent on the domain, on the data, and
on what (if any) training data or domain expertise is available. Another consideration is
that these approaches vary greatly in speed, so a suitable choice will depend on the
fraction of nodes that must be matched with this process, the number of potential matches
in the “canopy” for each node, and the overall rate of incoming data vs. available
resources.

3.6 Graph Database
 The Stucco system has had many types of graph databases, including Neo4j,
Titan, OrientDB, and PostgreSQL graph databases. Initially we researched and evaluated
different graph storage technologies, settling on a technology stack called TinkerPop,
which is easy to work with in the short term, but will be scalable in the long term.
TinkerPop provides a common API, called Blueprints, for many graph databases,
including Neo4j, a lightweight graph database that is easy to install and run, and Titan, a
scalable graph database that can use distributed storage to scale out. The input to Neo4j
and Titan was GraphSON, a superset of JSON. GraphSON can be used with many graph

databases, including those that use the Blueprints API, offering us flexibility to change
out the graph database without changing how Stucco ingested data. Unfortunately, the
freely available version of Neo4j limits the number of vertices that could be stored. The
amount of data we planned to ingest into Stucco quickly surpassed this limit.
 Titan provided for greater scaling by using horizontally scalable storage backends
(e.g. HBase, and Cassandra), which could handle the amount of data in Stucco. Titan
allowed us to put multiple instances of Cassandra on different machines to handle the
workload. Titan can also use an Elasticsearch instance to do the data indexing. However,
we discovered reliability and performance issues with Cassandra and Titan. At that time,
no new development on the Titan open-source codebase had been done for over four
months, leading us to believe that we would not see improvements with this technology.
 So, we moved to OrientDB because it also used the TinkerPop stack. However, an
obscure document revealed that indexes within OrientDB were not being utilized by its
implementation of the TinkerPop query API. Luckily, OrientDB did have a Java and SQL
query API that did exploit the indexes. Unlike Titan, OrientDB had no automated method
to handle scaling. The current OrientDB strategy for scaling does not reconfigure itself as
more machines are added. Users need to know ahead of time how much data, how many
machines, and of what concept type the data will be (vulnerability, software, DNS, etc.).
However, automated sharding of OrientDB was proposed for the next major version
release.
 Due to the lack of automated sharding, we explored database technologies that
were stable, easily portable, and included thorough documentation. We decided to use
PostgreSQL, a cross-platform, SQL compliant open-source database that has been around
for almost twenty years. PostgreSQL includes native full-text search capabilities. The
PostgreSQL technology has a bulk-loading option, which improved performance of data
ingestion into Stucco. The flexibility of PostgreSQL allowed us to further improve data-
ingestion performance by implementing alignment logic functions within the PostgreSQL
database. However, this custom logic added a complexity to the database that made it
incompatible with sharding technologies, such as Citus. We still have not implemented a
sharing technique for the PostgreSQL database.

3.7 Graph Database API
The graph database API is an interface with specific implementations for each

supported database. The current PostgreSQL database has an implementation that reads
from, writes to, and searches the knowledge graph through SQL statements. The interface
allows data storage technologies to be switched and added to suit users’ needs.

3.8 Query Service
The query service provides a RESTful web service to communicate with the graph

database API so that the user interface and any third-party applications can interface with
the knowledge graph. The query service will provide functions that facilitate common
operations (eg. get a node by ID).

3.8.1 Routes
• host:port/api/search

Returns a list of all nodes that match the search query.

• host:port/api/vertex/vertexType=<vertType>&name=<vertName>&id=<vertID>
Returns the node with the specified <vertName> or <vertID>.

• host:port/api/inEdges/vertexType=<vertType>&name=<vertName>&id=<vertID>
Returns the in-bound edges to the specified node.

• host:port/api/outEdges/vertexType=<vertType>&name=<vertName>&id=<vertID>
Returns the out-bound edges to the specified node.

• host:port/api/count/vertices

Returns a count of all nodes in the knowledge graph.
• host:port/api/count/edges

Returns a count of all edges in the knowledge graph.

3.9 External Data Fusion
 Since many enterprises already have
a data store for their endogenous data (e.g.
Elasticsearch, Splunk) we decided to modify
Stucco to utilize the data where it currently
resides, instead of ingesting it into the
Stucco knowledge graph. One particular
deployment site ingests flow data into
Elasticsearch, so we implemented a version
of the graph database API for Elasticsearch.
Then, we modified the query service to
request data from both the Stucco
PostgreSQL and Elasticsearch databases,
then merge the results together. This
essentially moved a lot of the alignment
work from ingest time to query time.

3.10 User Interface
 The user interface utilizes a RESTful HTTP service to query the necessary graph
APIs and return the results. The user interface is built using the React framework and the
state management library, Redux. This screenshot represents the main page of the user
interface, where users can search for key terms and see examples on the “Help” tab.

Below is an example of a view within the user interface. The flow data object shown here
provides the user with properties of the flow, as well as information on its relationships
with other data objects. This flow has two processes associated with it, namely VMware
and perl.

The following set of screenshots illustrates how to use Stucco to learn more about a
targeted local host called “mary”.

The results of a query for “mary”:

Then, we click on the host data type named “mary” and find properties of the host as well
as related information.

We see that an account called “fred” logged onto the host and we want to see more
information about “fred”, so we click on it.

It turns out that “fred” logged in from a host machine with an IP 79.116.146.15, by
clicking that host object we might be able to find more information.

There is not much information about the host itself, but let’s explore the IP object.

From here we can see this IP falls within a range of addresses. So, we click the address
range object.

The address range object includes properties like geolocation of the IPs in that range.
Based on our steps through the Stucco knowledge graph, we now know that the host
“mary” was accessed by a user on a machine located in Romania. Since “fred” has never
been to Romania, it appears that his credentials have been compromised.

4 Deployment
 We worked with PNNL to deploy a pilot Stucco system to CPPNet for the Cyber
Intelligence Center (CIC) evaluation. The data involved with CPPNet is about 34k
records per second, or 3 billion records per day.

5 Impact
 The initial impact of Stucco can be seen in the hours, possiblly days, worth of
manual searching that a cyber analyst would need to perform to determine the impact of
an incident and how to remedy the situation. One member of the project team was faced
with an incident alert prior to the development of Stucco. The team member had to
manually run commands on the machine in question, and search through thousands of
documents on Google in order to discover contextual information about the incident. This
undertaking took days to discover what the incident was, how it happened, and how to
remedy the situation. If our collegue had Stucco, this search would have involved a few
clicks through the user interface to discover the same information. (The use case shown
in the User Interface subsection represents the majority of the search that would be
performed by our team member.) Stucco can save cyber analysts days worth of work, and
the organization money for this invesitgation.
 The Stucco project has provided an opportunity for many college students to get
involved in cyber security research. Internships are a great way to train and educate the
next generation of cyber researchers and developers. Since the beginning of Stucco, we
have had 12 student interns contribute to the project.

We have received many emails from organizations interested in the Stucco
technology. In particular, a team of University of California Riverside and University of
Pittsburg researchers were interested in the NLP research for their Hacker-Chatter
project. An organization called Leidos contacted us saying they are using Stucco and
found it very helpful in their research to predict cyber attacks.

The Stucco system is broken up into multiple code repositories, one for each
component. The codebases are open-source on GitHub, so anyone interested in using or
modifying the system component can fork their own copy of the code. The following is a
list of components and the number of forks:

• Data Collectors and Scheduler - 1
• Document Service - 3
• Entity Extractor - 6
• Relation Extractor - 3
• STIX Extractors - 1
• Main Extraction Pipeline - 1
• Graph Alignment - 2
• Graph Database Connection API - 2
• Query Service - 1
• User Interface - 1
• Relation Bootstrap Research - 2
• Development Environment Setup - 2
• Demo - 1
• Auto-labeled Corpus (used by Entity Extractor)- 1
• Data Source Listing – 8

Another metric to show public interest is number of downloads from the Vagrant

Cloud site (https://app.vagrantup.com/stucco), which is where we host pre-built Stucco
instances as virtual machines. We have three versions of Stucco, each with multiple
downloads:

• Development environment with an empty knowledge graph – 58
• Demo instance with data from testbed – 438
• Production instance that actively collects new data – 95

6 Outreach
• Conference Paper Submitted: R.A. Bridges, K.M.T. Huffer, C.L.Jones, M.D.

Iannacone, J.R. Goodall, "Cybersecurity Automated Information Extraction
Techniques: Drawbacks of Current Methods, and Enhanced Extractors", submitted
to IEEE ICMLA 2017 on December 18-21, 2017.

• Paper: C.R. Harshaw, R.A. Bridges, M.D. Iannacone, J.R. Goodall, "GraphPrints:
Towards a Graph Analytic Method for Network Anomaly Detection" to CISRC
2016, Jan 28, 2016.

• Poster: C.R. Harshaw, R.A. Bridges, M.D. Iannacone, J.R. Goodall, "Graph-Prints:
A Contextual, Model-Free, Multi-Scale Network Analysis Framework for
Characterizing Network Flow Data" FloCon, 2016.

• Paper: C.L. Jones, R.A. Bridges, K.M.T. Huffer, J.R. Goodall "Towards a relation
extraction framework for cyber-security objects," Cyber and Information Security
Research Conference, 2015. Runner-up Best Short Paper Award.

• Corresponding conference presentation of above publication

• Paper: M.D. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K.M.T. Huffer, R.A.
Bridges, E.M. Ferragut, J.R. Goodall "Developing an Ontology for Cyber Security
Knowledge Graphs," Cyber and Information Security Research Conference, 2015.

• Presentation: J. Gerth and J. R. Goodall. "Stucco - Situation and Threat
Understanding by Correlating Contextual Observations". FloCon, 2014.

• Presentation: R.A.Bridges "New Techniques for Entity Extraction of Cyber Security
Concepts". CISML Seminar, March 28, 2014.

• Presentation: R.A.Bridges "Stucco - Situation and Threat Understanding by
Correlating Contextual Observations". ORNL short presentation to Mitre visitors,
May 06, 2014.

• Paper: R.A. Bridges, C. Jones, M. Iannacone, K.M. Testa, J.R. Goodall, "Automatic
Labeling for Entity Extraction in Cyber Security", ASE Open Scientific Digital
Library, May 28, 2014 Stanford, CA.

• Correpsonding conference presentation of this publication: R.A.Bridges "New
Techniques for Entity Extraction of Cyber Security Concepts". ASE Conference,
May 28, 2014 Stanford, CA.

• Poster: N. McNeil, R. A. Bridges, and J. R. Goodall. "Bootstrapping for Text
Extraction in Cyber Security". Joint Math Meeting, 2014.

• Poster: C. L. Jones, R. A. Bridges, M. D. Iannacone, and J. R. Goodall. "Text
Analysis for Timely Discovery of Cyber Security Concepts". Joint Math Meeting,
2014.

• Paper: R. A. Bridges, N. McNeil, M. D. Iannacone, B. Czejdo, N. Perez, and J. R.
Goodall. "PACE: Pattern Accurate Computationally Efficient Bootstrapping for
Timely Discovery of Cyber Security Concepts". International Conference on
Machine Learning and Applications (ICMLA) Special Session on Machine Learning
Challenges in Cyber Security Applications, 2013.

• Corresponding conference presentation of above publication

• Poster: A. Athalye, J. Goodall, M. Iannacone. “Morph: A Framework and DSL for
Transforming Structured Data”. ORNL Summer Poster Session 2013.

• Poster: C. Jones, R. Bridges, M. Iannacone, J. Goodall. “Text Analysis for Timely
Discovery of Cyber Security Concepts”. ORNL Summer Poster Session 2013.

• Poster: N. McNeil, R. Bridges, J. Goodall. “Bootstrapping for Text Extraction in
Cyber Security”. ORNL Summer Poster Session 2013.

7 Lessons Learned
 The most important lesson we learned had to do with complexity. There were too
many different components associated with the Stucco system, and each component had
at least one code repository. On top of that, many components depended on multiple
libraries and utilities, which only added to the complexity of building the Stucco system.
The intricacies of the system components also made it difficult to thoroughly test each
piece separately and as a whole system.
 Another issue we encountered was the performance, stability, and usability of a
data storage technology. More details about this topic are discussed in the “Graph
Database” subsection. We still have not solved this problem because our use case
required a storage technology to handle many reads and writes as single transactions, and
not as batch jobs. We also needed the storage system to be easily distributed for
scalability, preferably done ad hoc as the amount of data increases.
 The data model, STIX, was very difficult to work with. The focus of the STIX
model did not align nicely to the data types we were ingesting. More specifically, Stucco
focused on adding context to an incident or event, so we gathered data on IPs, blacklists,
software, software vulnerabilities, etc. STIX seemed to center around the actor, or “bad
guy”, and how the incident or campaign occurred, so our data mainly covered
Observables, and loosely covered Exploit Targets, TTPs, Indicators, and Course Of
Action. We tried to use existing STIX libraries to parse and ingest structured data;
however, the libraries were incredibly slow and did not implement the XML format
properly.
 Because of the issues with the data storage system and the data format, alignment
became a slow and complex process.

 The NLP research into extraction of cyber information from unstructured text was
promising, but a lack of labeled data made training algorithms difficult. By using semi-
structured data such as NVD, we were able to train models using an unstructured
description field because the structured fields provided labels for the entities. We trained
models on the labeled description fields, but the writing style of NVD was very different
from cyber security blogs, which were the targeted documents. It turned out that using a
two-step process to label entities was the best approach. In this process, the first step was
to use a gazetteer to do a lookup of known entities, and the second step used a machine
learning (ML) model, if the entity was not found in the gazetteer. Our efforts moved the
NLP in cyber research forward, but it was not at the point where it was useful in a real-
world system just yet. We needed more training data to cover more of the STIX concepts.
We believed the best approach to using NLP in a real-world system involved an offline
training, or curation step so that performance at data ingest would not slow to a crawl due
to machine learning processing.

8 Stucco 2.0 Approach
 Based on our experiences with this work and the lessons learned, we have come
up with alternative approaches to this problem. We are now more familiar with a data
storage technology called Elasticsearch. We believe many of our data storage issues
could be solved with this technology. Elasticsearch has the capabilities to handle batch
writes, fast reads, and provides automatic sharding for scalability.
 The issue of system complexity could be solved by developing a microservice
based approach. This would involve many stand-alone projects that handle only one type
of data, and an analytic fusion layer to pull all the data together for the user. This would
improve the build process, reduce testing complexity, reduce the amount of alignment
needed, and improve storage performance by limiting the amount of data.

9 Accomplishments
 There have been some significant accomplishments during the course of the
Stucco project. The current Stucco system can automatically align STIX-formatted
documents with no configuration necessary.
 We were able to improve data ingestion performance for the pilot Stucco instance
in CPPNet. We optimized the process to transform raw structured data into a more easily
aligned format and moved some of the alignment logic into the PostgreSQL data storage
system. These optimizations increased performance from 3.55 seconds to 1.09
milliseconds per Geo-IP record and 20 seconds to 48 milliseconds for each Argus record.
This is over 3000x and 400x improvement for Geo-IP and Argus, respectively.
 We pushed NLP in cyber research forward, but it the implementation is not quite
ready for production systems.
 The Stucco system is a forerunner in the area of threat intelligence platforms. One
of the earliest open-source projects was CIF (http://csirtgadgets.org/), which was
developed by REN-ISAC and available in 2012. The data provided is not in STIX format
and focuses on IPs, domains, and URLs related to malicious activity. Information Sharing
and Analysis Centers (ISACs) began to appear around 2013, but they were exclusive to
members within a particular industry and usually informal collections of data. Soltra
Edge (https://www.soltra.com/en/) began around 2014 as a joint venture between FS-

ISAC and Depository Trust and Clearing Corporation (DTCC). It was bought by NC4 in
2016 and is now a commercial system that uses STIX and TAXII. ThreatStream
(https://www.anomali.com/platform/threatstream) is a cybersecurity startup company
backed by Cloudera executives and a significant amount of venture capital. The company
started around 2014. It is a commercial product that can take STIX/TAXII data as input.
Another commercial product is Cisco’s Talos (https://www.talosintelligence.com/),
which collects threat intelligence from its products at organizations, essentially
crowdsourcing data collection. The intelligence it gathers is then fed into other Cisco
products such as Snort, Sourcefire, and Threat Grid. There have been many organizations
trying to develop systems that gather and/or synthesize threat intelligence. Stucco has
significant overlap with these new threat intelligence platforms, but Stucco started earlier,
is open-source, and is more comprehensive in scope.

10 Acknowledgments
This material is based on research sponsored by the Department of Homeland

Security Science and Technology Directorate, Cyber Security Division via BAA 11-02;
the Department of National Defence of Canada, Defence Research and Development
Canada; the Dutch Ministry of Security and Justice; and the Department of Energy. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of: the Department of Homeland Security; the Department of
Energy; the U.S. Government; the Department of National Defence of Canada, Defence
Research and Development Canada; or the Dutch Ministry of Security and Justice.

